Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 38(8): 778-785, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210505

RESUMO

Trichosporon asahii and T. inkin are emergent agents of deep-seated and disseminated infections in immunocompromised patients. The present study aimed to investigate the role of extracellular DNA (eDNA) and the enzyme deoxyribonuclease (DNase) on the structure of T. asahii and T. inkin biofilms, as well as to examine their effect on the susceptibility to antifungals. Biofilms reached maturity at 48 h; eDNA concentration in the supernatant increased over time (6 < 24 h < 48h). Exogenous eDNA increased biomass of Trichosporon biofilms at all stages of development, enhanced their tolerance to antifungals and improved their structural complexity. DNase reduced biomass, biovolume and thickness of Trichosporon biofilms, thereby rendering them more susceptibility to voriconazole. The results suggest the relevance of eDNA in the structure and antifungal susceptibility of Trichosporon biofilms and highlight the potential of DNase as adjuvant in biofilm control.


Assuntos
Antifúngicos , Trichosporon , Humanos , Antifúngicos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Trichosporon/genética , DNA , Desoxirribonucleases
2.
Med Mycol ; 57(8): 1038-1045, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649480

RESUMO

Trichosporon species have been considered important agents of opportunistic systemic infections, mainly among immunocompromised patients. Infections by Trichosporon spp. are generally associated with biofilm formation in invasive medical devices. These communities are resistant to therapeutic antifungals, and therefore the search for anti-biofilm molecules is necessary. This study evaluated the inhibitory effect of farnesol against planktonic and sessile cells of clinical Trichosporon asahii (n = 3) andTrichosporon inkin (n = 7) strains. Biofilms were evaluated during adhesion, development stages and after maturation for metabolic activity, biomass and protease activity, as well as regarding morphology and ultrastructure by optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. Farnesol inhibited Trichosporon planktonic growth by 80% at concentrations ranging from 600 to 1200 µM for T. asahii and from 75 to 600 µM for T. inkin. Farnesol was able to reduce cell adhesion by 80% at 300 µM for T. asahii and T. inkin at 600 µM, while biofilm development of both species was inhibited by 80% at concentration of 150 µM, altering their structure. After biofilm maturation, farnesol decreased T. asahii biofilm formation by 50% at 600 µM concentration and T. inkin formation at 300 µM. Farnesol inhibited gradual filamentation in a concentration range between 600 and 1200 µM. Farnesol caused reduction of filament structures of Trichosporon spp. at every stage of biofilm development analyzed. These data show the potential of farnesol as an anti-biofilm molecule.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Farneseno Álcool/farmacologia , Trichosporon/efeitos dos fármacos , Trichosporon/crescimento & desenvolvimento , Adesão Celular/efeitos dos fármacos , Humanos , Metabolismo/efeitos dos fármacos , Peptídeo Hidrolases/análise , Trichosporon/isolamento & purificação , Trichosporon/metabolismo , Tricosporonose/microbiologia
3.
BMC Infect Dis ; 14: 219, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24755107

RESUMO

BACKGROUND: Sporotrichosis is a chronic subcutaneous mycosis of humans and animals, which is typically acquired by traumatic inoculation of plant material contaminated with Sporothrix propagules, or via animals, mainly felines. Sporothrix infections notably occur in outbreaks, with large epidemics currently taking place in southeastern Brazil and northeastern China. Pathogenic species include Sporothrix brasiliensis, Sporothrix schenckii s. str., Sporothrix globosa, and Sporothrix luriei, which exhibit differing geographical distribution, virulence, and resistance to antifungals. The phylogenetically remote species Sporothrix mexicana also shows a mild pathogenic potential. METHODS: We assessed a genetically diverse panel of 68 strains. Susceptibility profiles of medically important Sporothrix species were evaluated by measuring the MICs and MFCs for amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), voriconazole (VRC), posaconazole (PCZ), flucytosine (5FC), and caspofungin (CAS). Haplotype networks were constructed to reveal interspecific divergences within clinical Sporothrix species to evaluate genetically deviant isolates. RESULTS: ITC and PCZ were moderately effective against S. brasiliensis (MIC90 = 2 and 2 µg/mL, respectively) and S. schenckii (MIC90 = 4 and 2 µg/mL, respectively). PCZ also showed low MICs against the rare species S. mexicana. 5FC, CAS, and FLC showed no antifungal activity against any Sporothrix species. The minimum fungicidal concentration ranged from 2 to >16 µg/mL for AMB against S. brasiliensis and S. schenckii, while the MFC90 was >16 µg/mL for ITC, VRC, and PCZ. CONCLUSION: Sporothrix species in general showed high degrees of resistance against antifungals. Evaluating a genetically diverse panel of strains revealed evidence of multidrug resistant phenotypes, underlining the need for molecular identification of etiologic agents to predict therapeutic outcome.


Assuntos
Antifúngicos/farmacologia , Sporothrix/classificação , Esporotricose/microbiologia , Animais , Farmacorresistência Bacteriana , Variação Genética , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Sporothrix/efeitos dos fármacos , Sporothrix/genética , Sporothrix/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...